	The following symmetry tests all fail: $(r, -\theta)$, $(-r, \theta)$ and $(-r, \pi - \theta)$				
[a]	Is the graph symmetric with respect to the polar axis? State your conclusion clearly.				
(DNO CONCLUSION (BOTH TESTS FAIL)				
	(1)				
[b]	Is the graph symmetric with respect to $\theta = \frac{\pi}{2}$? State your conclusion clearly. NO CONCLUSION (-1, -0) $-r = 2 - 2sm \cdot 2(-0)$, $(-7, -0)$ $(-7, -0)$ $(-7, -0)$ $(-7, -0)$ $(-7, -0)$ $(-7, -0)$				
	$(-r,-\theta)$ $-r=2-2sm2(-\theta)$ $(r,\pi-\theta)$ $r=2-2sm2(\pi-\theta)$				
	$-r = 2 + 2 \sin 2\theta$ $r = 2 - 2 \sin (2\pi - 2\theta)$				
	$r = -2 - 2 \sin 2\theta$. $r = 2 - 2 \left[\sin 2\pi \cos 2\theta - \cos 2\pi \sin^2 \theta \right]$				
[c]	Is the graph symmetric with respect to the pole? State your conclusion clearly. $V = 2 + 2 \leq 100$				
	$(r, \pi + \theta)$ $r = 2 - 2 \text{sm} 2(\pi + \theta)$ $(\frac{\pi}{2})$				
	r= 1-2sm(271+20)				
	Based on the symmetry tests, what is the minimum interval of the graph you need to plot (before using reflections to draw the rest of the graph)?				
[d]	Based on the symmetry tests, what is the minimum interval of the graph you need to plot				
	(corote wound to make the track of the Beatler)				
	OE[O, TI] OR OE[-I, II] O FOR ENTHER INTERVAL				
[e]	Find the zeros of the graph in the minimum interval from [d] (ie. for what values of θ in the minimum interval does the graph pass through the pole?).				
	(ie. for what values of θ in the minimum interval does the graph pass through the pole :). $O = 2 - 25 \text{ m} 2\Theta$				
(I)	sm20=1,				
	20=五色 〇二五〇				
[f]	Find the value of r for all the common values of θ in the minimum interval. Plot those points. Connect the points into a curve. Reflect that part of the curve				
	using the results of the symmetry tests in [a], [b] and [c] to draw the complete graph.				
	CALCULATE THE r-VALUES ON SCRATCH PAPER ON THE BACK. WRITE THE POLAR COORDINATES HERE.				
	(2,0) $(2+13,27)$				
	(2+13,-音) (2-13,音) (4,等)				
	(4,-年) (0,至) (2+13,8)				
	(4,-年) (0,年) (2+13,晋) (2+13,晋) (2+13,晋) (2-13,晋) (2-13,晋) (2-13,晋) (2-13,晋)				
	10 - 10				

[a] What is the type of the conic? Justify your answer clearly.

$$r = \frac{3}{3}$$

$$1 - \frac{3}{3} \sin \theta$$

$$e = \frac{7}{3} > 1$$

$$1 + \frac{7}{1} \cos \theta$$

$$0$$

[b] What is the equation of the directrix?

$$ep = \frac{29}{3}$$
 $\frac{7}{3}p = \frac{29}{3} \rightarrow p = \frac{29}{12}$
 $y = -\frac{29}{12}$
 $y = -\frac{29}{12}$

[c] Find the <u>polar AND rectangular</u> coordinates of the x - and y - intercepts.

(C	X-INT	POLAR (号, O) (号, 丌) (1)
0	20		RECT (±3,0),
4	-5	4-15	POLAR (-5,至)(2,翌)(3)
T	20)	RECT (0,-5)(0,-2)(2)
371	3		

[d] What are the rectangular coordinates of the vertices, center, foci, and endpoints of the latera recta?

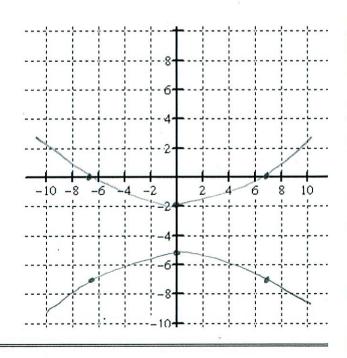
VERTICES:

$$(0,-5)(0,-2)$$

CENTER:

$$(0, -\frac{5-2}{2}) = (0, -\frac{7}{2})$$

FOCI:


$$(0,2.\overline{2})=(0,-7)$$
 AND

ENDPOINTS OF LATERA RECTA.

$$(\pm \frac{29}{3}, 0)$$
 $(\pm \frac{29}{3}, -7)$

[e] Graph the conic by connecting the relevant points from [d] appropriately.

